AI/Backend Career Learning Plan

Target Roles (Priority Order):

  1. AI Application Engineer / GenAI Engineer
  2. AI/ML Engineer
  3. Python/FastAPI Backend Engineer
  4. Solutions Engineer

Timeline: 12 Weeks Approach: Project-Based Learning + DSA Practice


Role Priority & Overlap Analysis

                    AI/ML Foundations    Python/FastAPI    Cloud/Deployment    Communication
─────────────────────────────────────────────────────────────────────────────────────────────
AI App Engineer         ████████████        ████████████       ██████████         ████████
AI/ML Engineer          ████████████████    ██████████         ████████           ██████
Python Backend          ████                ████████████████   ████████████       ████
Solutions Engineer      ██████              ████████████       ██████████         ████████████████

Key Insight: ~60% of skills overlap across all four roles. Learn once, apply everywhere.


DevOps/Cloud Relevance

RoleRelevanceWhat You Need
AI App Engineer⭐⭐⭐⭐ HighDocker, AWS (SageMaker, Lambda, Bedrock), basic K8s
AI/ML Engineer⭐⭐⭐⭐⭐ Very HighMLOps, model deployment, GPU instances, K8s for ML
Python Backend⭐⭐⭐ MediumDocker, basic AWS (EC2, RDS, S3), CI/CD
Solutions Engineer⭐⭐ Low-MediumConceptual understanding, not hands-on

Recommendation: Learn Docker + AWS basics (EC2, S3, Lambda) as foundation. Deep Kubernetes later if needed.


Daily Structure

┌─────────────────────────────────────────────────────────────────┐
│  Morning (1-2 hrs)    │  DSA: 1 Neetcode problem               │
│                       │  → Build habit, stay interview-ready   │
├───────────────────────┼─────────────────────────────────────────┤
│  Afternoon (2-3 hrs)  │  Learn: ONE concept deeply             │
│                       │  → Videos, docs, tutorials             │
├───────────────────────┼─────────────────────────────────────────┤
│  Evening (2-3 hrs)    │  Build: Apply to chatbot project       │
│                       │  → Hands-on implementation             │
└───────────────────────┴─────────────────────────────────────────┘

Weekly Total: 25-30 hours

12-Week Learning Plan

Phase 1: AI Core (Weeks 1-4)

Focus: Roles #1 and #2

Week 1-2: LLM Fundamentals

DayDSALearnBuild
MonArrays - Contains DuplicateHow LLMs work (transformers basics)-
TueArrays - Valid AnagramTokenization & embeddings-
WedArrays - Two SumPrompt engineering fundamentalsTest different prompts on chatbot
ThuArrays - Group AnagramsChain-of-thought, few-shot promptingImprove chatbot system prompt
FriArrays - Top K FrequentLangChain intro - ChainsStart LangChain refactor
Sat-LangChain - AgentsContinue LangChain integration
Sun-Review & restCleanup & commit

Resources:

  • Andrej Karpathy’s “Let’s build GPT” (YouTube)
  • Jay Alammar’s “The Illustrated Transformer”
  • OpenAI Prompt Engineering Guide
  • LangChain Documentation

Week 3-4: RAG & Vector Databases

TopicLearnBuild
Chunking StrategiesSemantic vs fixed-size, overlapImplement RecursiveCharacterTextSplitter
Embedding ModelsOpenAI, Cohere, Sentence TransformersCompare embedding quality
Retrieval TechniquesSimilarity, MMR, hybrid searchAdd BM25 + FAISS hybrid
Vector DBsPinecone vs Chroma vs WeaviateMigrate to Chroma (or keep FAISS)
EvaluationRetrieval accuracy metricsBuild eval pipeline
CitationsConfidence scores, source trackingAdd relevance scores to UI

Resources:

  • LangChain RAG tutorials
  • Pinecone Learning Center
  • “Building RAG Applications” - DeepLearning.AI

Phase 2: Advanced AI + Backend (Weeks 5-8)

Focus: Roles #1, #2, and #3

Week 5-6: AI Agents & Tools

TopicLearnBuild
ReAct PatternAgent reasoning loopsSimple ReAct agent
Function CallingOpenAI/Anthropic function callingAdd tool use to chatbot
LangGraphMulti-step agent workflowsComplex agent pipeline
MCPModel Context ProtocolMCP server basics
Multi-AgentAgent communication patternsTwo-agent system

Resources:

  • LangGraph Documentation
  • Anthropic MCP Documentation
  • “Building AI Agents” - Harrison Chase tutorials

Week 7-8: FastAPI Production Patterns

TopicLearnBuild
Async Pythonasync/await deep diveAsync endpoints
FastAPI AdvancedDependency injection, middlewareRefactor chatbot backend
AuthenticationOAuth2, JWT tokensAdd auth to API
DatabaseSQLAlchemy async, AlembicAdd conversation storage
CachingRedis basicsCache embeddings/responses
Testingpytest, async testingTest suite for API

Resources:

  • FastAPI Official Documentation
  • TestDriven.io FastAPI tutorials
  • ArjanCodes YouTube (Python best practices)

Phase 3: Deployment & Polish (Weeks 9-12)

Focus: All 4 roles

Week 9-10: Cloud & Deployment

TopicLearnBuild
DockerContainers, Dockerfile, multi-stageDockerize chatbot
Docker ComposeMulti-container appsRedis + API + UI setup
AWS EC2Instance setup, security groupsDeploy chatbot
AWS S3Object storageStore embeddings/files
AWS LambdaServerless functionsServerless endpoint (optional)
AWS BedrockManaged LLMsSwitch to Bedrock (optional)

Resources:

  • Docker Official Tutorial
  • AWS Skill Builder (free)
  • FreeCodeCamp AWS Course

Week 11-12: Solutions Skills & Portfolio

TopicLearnBuild
API DesignOpenAPI, versioning, documentationPolish API docs
Technical WritingDocumentation best practicesREADME, blog post
Demo SkillsPresentation, storytellingRecord demo video
Troubleshooting5 Whys, systematic debuggingDocument debugging process
PortfolioGitHub profile optimizationClean all repos

Deliverables:

  • 2-3 polished GitHub projects
  • Updated LinkedIn with projects
  • Blog post about RAG learnings
  • Demo video of chatbot

DSA Track: Neetcode 150

Strategy: 1 problem/day, pattern-based approach

Schedule

WeeksPatternProblemsCount
1-2Arrays & HashingContains Duplicate, Valid Anagram, Two Sum, Group Anagrams, Top K Frequent, etc.9
3-4Two Pointers + Sliding WindowValid Palindrome, 3Sum, Container with Water, Best Time to Buy Stock, etc.7
5-6Stack + Binary SearchValid Parentheses, Min Stack, Binary Search, Search Rotated Array, etc.11
7-8Linked List + TreesReverse LL, Merge Two LL, Invert Tree, Max Depth, Same Tree, etc.18
9-10Tries + Heap/Priority QueueImplement Trie, Word Search, Kth Largest, Task Scheduler, etc.9
11-12Graphs + DP BasicsNumber of Islands, Clone Graph, Climbing Stairs, House Robber, etc.15

Tools:

  • Neetcode.io - Organized problem list with video explanations
  • LeetCode - Practice platform
  • Language: Python (aligns with AI/Backend focus)

Rules:

  1. Time-box: 30 mins max per problem
  2. If stuck after 20 mins, look at hints
  3. If stuck after 30 mins, study the solution
  4. Always understand the pattern, not just the solution
  5. Review failed problems on weekends

Chatbot Upgrade Roadmap

Current State

  • FAISS vector search
  • Sentence Transformers embeddings
  • Groq API for LLM
  • Streamlit UI
  • Basic chunking

Level 1: Quick Wins

  • Semantic chunking with overlap
  • Chat memory (conversation history)
  • Hybrid search (BM25 + vector)

Level 2: Production Features

  • FastAPI backend (separate from UI)
  • Evaluation pipeline with metrics
  • Citation confidence scores
  • Rate limiting & caching

Level 3: Advanced

  • LangChain/LangGraph migration
  • Multi-source RAG (PDF, web, etc.)
  • Docker deployment
  • AWS hosting

Resources Master List

LLM/AI

ResourceTypeLink
DeepLearning.AI Short CoursesCoursehttps://www.deeplearning.ai/short-courses/
LangChain AcademyCoursehttps://academy.langchain.com/
Hugging Face NLP CourseCoursehttps://huggingface.co/learn/nlp-course
Andrej Karpathy YouTubeVideoshttps://www.youtube.com/@AndrejKarpathy
LangChain DocsDocshttps://python.langchain.com/docs/

Python/FastAPI

ResourceTypeLink
FastAPI DocumentationDocshttps://fastapi.tiangolo.com/
TestDriven.ioTutorialshttps://testdriven.io/blog/topics/fastapi/
ArjanCodesYouTubehttps://www.youtube.com/@ArjanCodes
Real PythonArticleshttps://realpython.com/

Cloud/DevOps

ResourceTypeLink
AWS Skill BuilderCoursehttps://skillbuilder.aws/
Docker TutorialDocshttps://docs.docker.com/get-started/
FreeCodeCamp AWSYouTubehttps://www.youtube.com/freecodecamp

DSA

ResourceTypeLink
Neetcode.ioProblemshttps://neetcode.io/
LeetCodePracticehttps://leetcode.com/
NeetCode YouTubeVideoshttps://www.youtube.com/@NeetCode

Weekly Checklist Template

## Week [X] - [Date Range]
 
### Goals
- [ ] Main learning goal
- [ ] Main building goal
- [ ] DSA problems (5-6)
 
### DSA Progress
- [ ] Mon: Problem name
- [ ] Tue: Problem name
- [ ] Wed: Problem name
- [ ] Thu: Problem name
- [ ] Fri: Problem name
 
### Learning Completed
- [ ] Topic 1
- [ ] Topic 2
 
### Built/Implemented
- [ ] Feature 1
- [ ] Feature 2
 
### Blockers/Notes
-
 
### Next Week Preview
-

Interview Talking Points

After completing this plan, you’ll be able to say:

“I built a RAG chatbot and iteratively improved it:

  • Started with basic FAISS and chunking
  • Added semantic chunking, improving retrieval accuracy by X%
  • Implemented hybrid search for edge cases
  • Built a FastAPI backend with auth and rate limiting
  • Deployed on AWS with Docker
  • Created an evaluation pipeline to measure quality”

This demonstrates: growth mindset, practical engineering, production thinking, and measurable impact.


Progress Tracker

WeekPhaseStatusNotes
1LLM Fundamentals⬜ Not Started
2LLM Fundamentals⬜ Not Started
3RAG & Vector DBs⬜ Not Started
4RAG & Vector DBs⬜ Not Started
5AI Agents⬜ Not Started
6AI Agents⬜ Not Started
7FastAPI⬜ Not Started
8FastAPI⬜ Not Started
9Deployment⬜ Not Started
10Deployment⬜ Not Started
11Polish⬜ Not Started
12Polish⬜ Not Started

Last Updated: February 2026 Created with Claude Code